ANALISIS ANGIN KENCANG DARI AWAN CUMULONIMBUS DENGAN WRF-ARW: STUDI KASUS DAERAH ISTIMEWA YOGYAKARTA FEBRUARI 2020
Keywords:
angin kencang, WRFAbstract
Fenomena angin kencang menjelang hujan merupakan fenomena yang dominan saat cuaca buruk di wilayah indonesia. Awan cumulonimbus pada fase matang menampung sejumlah uap air, air hingga es dalam jumlah besar akibat proses konveksi. Limit kemampuan maksimal menahan mengakibatkan dorongan kebawah yang sangat kuat sebagai respon gaya grafitasi. Gusty (hembusan) akibat downdraft ini menghasilkan angin kencang hingga ekstrem sebelum/bersamaan dengan presipitasi keluar dari badan awan cumulonimbus. Kejadian ekstrem angin kencang tanggal 14 Februari 2020 disimulasikan menggunakan weather research forecast (WRF). Angin permukaan 10 meter dan angin lapisan ketinggian 950 mb menunjukkan nilai 10-14 knots dan 10 hingga 18 knots. Terdapat sinyal reflektivitas tinggi keluaran WRF yang bersesuaian dengan lokasi kejadian angin kencang, yang bersesuai juga dengan pola siklonal angin. Indeks labilitas Konvektif Indeks (KI) tidak dapat menggambar lokasi pasti kejadian lokasi potensi angin kencang.
References
I. Rusmala, R. Zikri, R. Rahman, M. Ansori, I. Nugraheni and A. Ali. (2021). "Identification of small toenado event using weather radar and Himawari-8 products (case study: puting beliung event on November 22, 2018 in Jakarta)," in The 2nd International Conference on Tropical Meteorology and Atmospheric Science.
H. Ismanto, Karakteristik Kompleks Konvektiv Skala Meso di Benua Maritim Indonesia, Bandung: Fakultas Ilmu dan Teknologi Kebumian ITB.
H. Ismanto, Hartono and M. A. Marfai. (2020). "Classification tree analysis (CTA) of smoke detection using Himawari_8 satellite data over Sumatera-Borneo Island, Indonesia," SN Applied Sciences, pp. https://doi.org/10.1007/s42452-020-03310-z.
H. Ismanto, H. Hartono and M. Marfai. (2020). "Visibility Estimation Due To Forest Fire smoke Using Backward Elimination Multiple Regression of HImawari_8 Satellite Data Over Sumatera and Borneo Island Indonesia," in International Conference of Science and Technology (ICST) UGM, Yogyakarta, Indonesia.
W. Ashley and T. Mote. (2005). "Derecho hazards in the United States," Bulletin American Meteorology Society, pp. 209-220.
Supari, F. Tangang, L. Juneng and E. Aldrian. (2016). "Observed changes in extrem temperature and prcipitation over Indonesia," International Journal of Climatology, p. doi:10.1002/joc4829.
I. Gultepe, R. Sharman, P. D. William, B. Zhou, G. Ellrod, P. Minnis, S. Trier, S. Griffin, Seong, S. Yum, B. Gharabaghi, W. Feltz, M. Temini, P. Zaoxia, L. Storer, P. Kneringer, M. J. Weston, H.-Y. Chuang, L. Thobois and A. P. Dimri. (2019). "A Review of High Impact for Aviation Meteorology," Pure and Applied.
L. L. Jensen and R. J. Hansmann. (2013). "Commercial Airline Speed Optimization STrategies for Reduced Cruise Fuel Consumtion," in Aviation Technology, Integration, and Operations Conference, Los Angeles, CA.
C. Doswell. (2001). "Severe convective storms - An overview," Meteorological Monographs, pp. 1-26; vol. 28.
S. Chaundhuri and A. Middey. (2011). "Adaptive neuro-fuzzy inference system to forecast," Meteorology Atmospheric Physics, pp. 139-149.
H. Wang, Y.-M. Zhang, J.-X. Mao and H.-P. Wan. (2020). "A probabilistic approach for short-term prediction of wind gust speed using ensemble learning," Journal of Wind Engineering & Industrial Aerodynamics, p. doi: 10.1016/j.jweia.2020.104198.
T. T. Fujita. (1985). The Downburst: Microburst and Macroburst, Chicago: The University of Chicago Press, 122 pp.
F. H. Ludlam. (1963). "Severe Local Storms. A Review Meteorological Monogram No 27," American Meteoorlogical Society, pp. 1-30.
H. R. Byers and R. R. J. Braham. (1949). The Thunderstorm, Washington, DC: U. S. Department of Commerce.
D. J. Musil, W. R. Sand and R. A. Schleusener. (1973). "Analysis of data from T-28 aircraft penetration of a Colorado hailstorm.," Journal Applied Meteorology, pp. 12, 1364-1370.
D. J. Musil, E. L. May, P. L. Smith and W. R. Sand. (1976). "Structure of an evolving hailstorm, Part IV: Internal structure from penetration aircraft.," Monthly Weather Review, pp. 104, 596-602.
P. Stucki, S. Dierer, C. Welker, J. Gomez-Navaro, C. Raible, O. Martius and S. Bronnimann. (2016). "Evaluation of downscaled wind speeds and parameterised gust for recent and historical windstorm in Switzerland," Tellus A: Dynamic Meteorology and Oceanography, p. doi: 10.3402/tellusa.v68.31820.
A. Gutierrez, C. Porrini and R. Fovell. (2020). "Combination of wind gust models in convective event," Journal of Wind Engineering and Industrial Aerodynamics, p. 10.1016/j.jweia.2020.104118.
E. Wijayana, "Tertimpa Pohon Beringin di Perempatan Terong, Pengemudi Mobil Tewas," 14 februari 2020. [Online]. Available: https://jogja.suara.com/read/2020/02/14/200900/tertimpa-pohon-beringin-di-perempatan-terong-pengemudi-mobil-tewas.
Kuntadi, "Hujan Deras Guyur Yogyakarta, Puluhan Pohon Tumbang," 14 Februari 2020. [Online]. Available: https://news.okezone.com/read/2020/02/14/510/2168636/hujan-deras-guyur-yogyakarta-puluhan-pohon-tumbang.
ICAO, (2014). Doc. 9837 Manual on Automatic Meteorological Observing Systems at Aerodromes, International Civil Aviation Organization.
I. Suomi, S. -E. Gryning, R. Floors, T. Vihma and C. Fortelius. (2015). "On the vertical structure of wind gust," Quarterly Journal of the Royal Meteorological Society, pp. 1658-1670. doi:10.1002/qj.2468.
M. B. Rhudy, Y. Gu, J. N. Gross and H. Chao. (2017). "Onboard wind velocity estimation comparison for unmanned aircraft systems," IEEE Transactions on Aerospace and Electronic Systems, pp. 55-56.
E. Krider, "Thunderstorm," 7 Juli 2019. [Online]. Available: http://www.britannica.com/science/thunderstorm.
P. Sallis, W. Claster and S. Hernandez. (2011). "A machine-learning algorithm for wind gust prediction," Computers & Geoscience, pp. 1337-1344; doi:10.1016/j.cageo.2011.03.004.